Mohammed A. Elamin Mohammed

Raleigh, NC 27607 | http://linkedin.com/in/elaminmohammed

Research Experience

The Nonwovens Institute / NC State University

Research Assistant

- Analyze the dynamic failure of nonwoven textile through implementing hands-on tensile tests.
- Investigating the high-strain rate behavior of nonwovens and strain-rate influence on the fibers orientation. •
- Improving the manufacturing speed of nonwoven textiles through conducting high strain rate tests.
- Preparing product data analysis for nonwovens manufacturers utilizing testing and high-speed imaging techniques.

The University of Akron

Graduate Assistant

- Developed novel experimental techniques to investigate impact and post impact response of composites structures. •
- Enhanced the design of the naval structures through assessing the dynamic failure of composite materials. ٠
- Proposed detailed experimental study concluding that operating the naval marines and the aerospace shuttles in cold • environments will reduce their strength by about 30%.
- Showed that using the suggested composite skin significantly enhances the strength of structures by about 60 %. •

Professional Experience

The University of Utah **Teaching Assistant**

•

- Instructed the Strength of Materials lab and performed wide range of tensile, torsion, bending, hardness, buckling, and combined loading experiments.
- Instructed several undergraduate mechanical engineering courses such as Aerospace structures, heat transfer and thermodynamics.

Khartoum North Power Station

Mechanical Engineering Intern

- Sep. 2013– May. 2014 Assessed the performance of the largest thermal power plant in Sudan (400 MW) with the power plant engineering team.
- Provided detailed maintenance recommendations which helped reduce the operation cost of the cooling towers by ~17%.

Education

Ph. D., Mechanical And Aerospace Engineering North Carolina State	Expected Dec 2021
M.S., Mechanical Engineering The University of Akron	May. 2018
B.S., Mechanical Engineering University of Khartoum, Sudan	Nov 2014

Skills

Programming: MATLAB, LabVIEW. Productivity: LaTeX, MS Office. Finite Element Analysis (FEA): ABAQUS, ANSYS, COMSOL. Engineering Drawing: Solidworks, PTC Creo, AutoCAD. Experimental: Dynamic Testing, Split Hopkinson Bar/Kolsky Bar, Instron & MTS Testing Machines, Non-destructiveInspection, Image Processing, Digital Image Correlation (DIC).

Publications and Research projects

Publications:

- M. Elamin, B. Li, K.T. Tan (2018). Impact damage of composite sandwich structures in arctic condition. Composite Structures, 192: 422-433.
- M. Elamin, B. Li, K.T. Tan (2018). Impact performance of stitched and unstitched composites in arctic conditions. Journal of Dynamic Behavior of Materials, 1-11. M.H. Khan, M. Elamin, B. Li, K.T. Tan (2018). X-ray Micro-Computed Tomography Analysis of Impact Damage Morphology in Composite Sandwich Structures due to Cold Temperature Arctic Condition. Journal of Composite Materials, 1-14. **Research Projects:**
- Fracture Behavior of Diabetic Patients Bones (Drop-tower, High Speed Camera): Developed impact experiments of sugar solution treated bone specimens, utilized high-speed imaging of the fracture process and extracted dynamic stress intensity factors and crack growth rates, Analyzed the structural changes responsible for increased bone fractures in diabetic patients.
- Impact Performance of Stitched Composites in Extreme Environments, (Instron 9350, Micro-CT): On NASA T650-35 stitched • polyimide laminates. Analyzed the temperature effects on the durability of NASA space shuttles. Provided detailed explanation on crack growth and non-visible impact damages to achieve safety and cost effectiveness.
- Experimentally Testing Liquid Crystal Thermoset Fiber Glass Composites Response to Impact (Laminate manufacturing, Droptower): Fabricated specimens using a powder layup methodology, Evaluated the impact performance of LCT composites using drop-tower system.
- Design of Gearbox System for a Peanut Oil Press Machine (Solidworks, AutoCAD): Applied mathematical models to calculate the transmitted forces in the Gearbox system. Suggested cost-effective materials with high damage tolerance. Provided the manufacturer with detailed drawings of the gearbox system using Solidworks and AutoCAD.

Raleigh, NC

Jan. 2019 – present

Aug 2016 - May 2018

Akron, OH

Salt Lake City, UT

Aug. 2018 - Dec. 2018

Khartoum, Sudan